Multi-objective parameter optimization of common land model using adaptive surrogate modeling
نویسندگان
چکیده
Parameter specification usually has significant influence on the performance of land surface models (LSMs). However, estimating the parameters properly is a challenging task due to the following reasons: (1) LSMs usually have too many adjustable parameters (20 to 100 or even more), leading to the curse of dimensionality in the parameter input space; (2) LSMs usually have many output variables involving water/energy/carbon cycles, so that calibrating LSMs is actually a multi-objective optimization problem; (3) Regional LSMs are expensive to run, while conventional multi-objective optimization methods need a large number of model runs (typically ∼ 10–10). It makes parameter optimization computationally prohibitive. An uncertainty quantification framework was developed to meet the aforementioned challenges, which include the following steps: (1) using parameter screening to reduce the number of adjustable parameters, (2) using surrogate models to emulate the responses of dynamic models to the variation of adjustable parameters, (3) using an adaptive strategy to improve the efficiency of surrogate modeling-based optimization; (4) using a weighting function to transfer multi-objective optimization to single-objective optimization. In this study, we demonstrate the uncertainty quantification framework on a single column application of a LSM – the Common Land Model (CoLM), and evaluate the effectiveness and efficiency of the proposed framework. The result indicate that this framework can efficiently achieve optimal parameters in a more effective way. Moreover, this result implies the possibility of calibrating other large complex dynamic models, such as regionalscale LSMs, atmospheric models and climate models.
منابع مشابه
Optimal Shaping of Non-Conventional Permanent Magnet Geometries for Synchronous Motors via Surrogate Modeling and Multi-Objective Optimization Approach
A methodology is proposed for optimal shaping of permanent magnets with non-conventional and complex geometries, used in synchronous motors. The algorithm includes artificial neural network-based surrogate model and multi-objective search based optimization method that will lead to Pareto front solutions. An interior permanent magnet topology with crescent-shaped magnets is also introduced as t...
متن کاملEvaluating and developing parameter optimization and uncertainty analysis methods for a computationally intensive distributed hydrological model
Evaluating and Developing Parameter Optimization and Uncertainty Analysis Methods for a Computationally Intensive Distributed Hydrological Model. (August 2008) Xuesong Zhang, B.S, Qingdao University, China; M.S., Beijing Normal University, China Chair of Advisory Committee: Dr. Raghavan Srinivasan This study focuses on developing and evaluating efficient and effective parameter calibration and ...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملMarket Adaptive Control Function Optimization in Continuous Cover Forest Management
Economically optimal management of a continuous cover forest is considered here. Initially, there is a large number of trees of different sizes and the forest may contain several species. We want to optimize the harvest decisions over time, using continuous cover forestry, which is denoted by CCF. We maximize our objective function, the expected present value, with consideration of stochastic p...
متن کاملAn evaluation of adaptive surrogate modeling based optimization with two benchmark problems
Surrogate modeling uses cheap “surrogates” to represent the response surface of simulation models. It involves several steps, including initial sampling, regression and adaptive sampling. This study evaluates an adaptive surrogate modeling based optimization (ASMO) method on two benchmark problems: the Hartman function and calibration of the SAC-SMA hydrologic model. Our results show that: 1) G...
متن کامل